NONSTEADY CONVECTIVE HEAT EXCHANGE IN PRISMATIC PIPES
OF TRIANGULAR CROSS SECTION
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The Kantorovich method and the method of characteristic curves are used successively
to solve the nonsteady problem of convective heat exchange during the laminar flow
of a viscous incompressible liquid in prismatic pipes having cross sections in the
form of isosceles triangles, and an approximate analytical expression is obtained
for the temperature field in the liquid.

The solution of nonsteady problems of convective heat exchange in pipes of "nonclassi-
cal” cross section by analytical methods is a very complicated task, The use of the method
of the Laplace double integral transformation with the Bubnov—Galerkin methed to solve such
problems is hindered by the achievement of the transition back to the region of the inverse
transforms [1]. We will obtain an approximate analytical solution to the nonsteady problem
of heat exchange in the laminar hydrodynamically stabilized flow of a liquid inside a pipe
having a cross section in the form of an isosceles triangle with a constant temperature To
of the liquid at the entrance, a constant distribution of the temperature T, at the initial
time, and a constant temperature Ty # T, of the inner surface of the channel wall. The re-
maining assumptions are standard [2].

We formulate the boundary-value problem

aT ar - { &*T T
5 + o(x, y)-{;; za( o o ) ()
(t>0, 2>0, 0<y<h,, —ytghp<x<<ytgh)
T(x, ¢ 2, 0) =T, (2)
T(x, . 0, )y=T,, 3>
{T(x, 4oz Dls =T, (4)

Here T = T(x, ¥, 2, t), t is the time, the z axis is directed along the axis of the stream,
the x and y axes are located in the plane of the channel cross section, a is the coefficient
of thermal diffusivity, and w = w(x, y) is the velocity profile of the liquid flow in the

pipe {2]:

o{x, y) = 30y

(B+2)(x* — i tg?h) 'L)B—‘é‘ _q
(B —2)tg2p 2, (hm '

where B = V4 + 3/2[(1/tan®B) — 1]. The index S denotes the lateral surface of the pipe. We
introduce the dimensionless quantities

o_T=T L. 1.2
T —T, Pe &,
W :
Fo— & x_* y_Y peYa'm
T’ h, n,’ a
In dimensionless form the boundary-value problem is formulated as follows:
00 00 0%*0 0?0
+3AW (X, Y = , (5)
oFo ( ) 0z &X2-+ oy?
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0(X, Y, Z, 0)=0, (6)

8(X, Y, 0, Fo)=0, (N
09X, Y, Z, Fo)/§, = 1, (8)
where
B+ 2
= T . 8:{Z>0,0KY<<I, X=2YtgB},

W(X, Y)=[X>—Y2tg2 ] {Y>% —1].

To solve the problem (5)-(8) we successively use the Kantorovich method [3] and the meth~
od of characteristic curves [4]. We represent the approximate solution of the problem in
the form

8,(X, Y, Z, Fo)= 1 + 3 4,(Z, Fo) ¥, (X, V), 9)
k==1
where Yk (X, Y) is the system of coordinate functions (k = 1, 2, ..., n). The eigenfunctions
of the Sturm— Liouville steady-state problem [2] are taken as the coordinate functions.

The method of R~functions [5] can be used in the selection of the coordinate functions
in the case of more complicated cross-sectional profiles of prismatic pipes.

Using the Kantorovich method, for the determination of the unknown coefficient-functions
ax(Z, Fo) we obtain a system of first-order linear differential equations in partial deriva-

tives:
"1 oa, on, - "‘1
2 A, —2-+B ko 2 D, 10
- Bm o + Bym Y - BGlp, (10)
Ay = Ay, = [ [ w,0,aD,
D

By = Ay =34 (| W¥, ¥ _dD,
D

Dy, =D, = | { aw, ¥, 4D
D
with initial conditions of the form

( n
S 4,z 04, = F,
k=1

11

I > 4, (0, Fo) Ay, = Fpn.
k=1

where F, = —” Y (X, dD, D is a region of the pipe cross section, A is the Laplace opera-

D
tor, and m = 1, 2, ..., n. From the conditions (6)~(8) and (11) it is seen that ¢ (Z, 0) =
ar(0, Fo) = q (0, 0), k =1, 2, ..., n.

We use the method of characteristic curves to solve the system (10), (11).
Let us consider the case when n = 2,
We have

Y, (X, ¥) = (247 — 1110 X2 L 45,5 V) W (X, V),

¥,(X, Y) = (152 — 11340 X2 1 31,6Y) W (X, Y).

In the second approximation (n = 2) the dimensionless temperature is obtained in the form
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Fig. 1.Variation of average~mass temperatureof liquid
in a pipe with a cross section in the form of an
isosceles triangle (B = ©/5, solid lines; B = =/
5.5, dashed lines). Respective values of Z: 1)
0.09; 2) 0.15; 3) 0.25; 4) 5.

, [ak(Fo)¥, (X, Y), Z>yFo,
O(X, Y, Z, Fo) = 1 + N { &} (Z, Fo) ¥, (X, Y), pFo<Z<yFo, (12)

k=l

ai (Z)¥, (X, Y), Z< pyFo.

The following expressions are obtained for the determination of the coefficients ali(Fo)
and ap(z) (k =1, 2) in Eq. (12): ‘

a; (Fo) = R exp (vFo) —G [H}%ﬁ“ exp(vFo) +
(p—v)(p—9q) expipo) (g—0v)g—p) e

4} (Fo) = ;_‘—q [(Mp + N) exp(p Fo)— (Mg + N)exp(g Fo)l,

wub+4d

a?(Z):Rexp(uZ)—G[ w_Du—h exp (uZ) +
hz - hb+-d FP+fo—+d Z]
T PTGy P

a3 (Z) = f—_l_—h {(MF -+ N,) exp(fZ) — (Mh + Ny exp (hZ)],

where
R:ﬁ G = T % = erofhy + Vor g — crify — V% i
o o (0 — 0%) c(r.oq —ray)
g:'\’z(’zﬁl_flﬁz_)’ v______ﬁ_z , M___ﬂ"zal'—’laz ,
C(ryo, — o) & € (0 — )
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up are the roots of the equation
B, —pdy By—pd, | =0,
| Bp—pdy By —pdy |
with us > uz,
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MyMoC (g — p) Bty

and a,;(0, 0) and a,{(0, 0) are determined from (11) with allowance for the above comment.

The following expressions are obtained for the determination of the coefficients ak(Z

Fo) (k =1, 2):
a(Z, Fo)=exp[(—ﬂ—2——— i)E,:Iexp[—(%h—{——lz)vq] X
i i

2
in

T, (0J, 2y Tt —1I%) dr—LfTo(r)J @V TEE—Im) dr +

~
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unr
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+a,0, 04, @V =TE) |,

71 o[ o2
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x| § X, (@4, @V b0 (v — b)) dr +
0

bam ——

+ 5 X (1) 4o 2V BE(r— b)) dT + a,(0, 0)Jy(2 V —bybgEn )] .
9

where

g==Z—p,Fo, 1n=2—p,Fo,
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TABLE 1. Results of a Calculation of the Average~
Mass Temperature of Liquid in a Pipe with a Cross
Section in the Form of an Equilateral Triangle by
Eq. (12) (upper values) and from the Data of [6]
(lower values)

z
Fo :
0,09 | 0,15 | 0.25 | 035
0,00 0.0003 . 0,0003 0,0003 0.0003
0,0000 0,0000 0,0000 0,0000
0,02 0,6498 0,6498 ] 0,6498 0,6498
0,5683 0,5683 0,5683 0,5683
0,06 0,9250 0,9497 0,9497 0,9497
0,9132 0,9195 0,9195 0,9195
0,1 90,9270 0,9841 0,9920 90,9920
0,9132 0,9813 0,9850 0,9850
0,14 0,9270 0,9842 0,9987 0,9987
0,9132 0,9814 . 0,9972 . 0,9972
0,2 0,9270 0,9842 0,9988 0,9999
0.,9132 0,9814 0,9986 0.9998
0.3 0,9270 0,9842 0,9988 0,9999
0,9132 0,9814 0,9986 0,9999

Ay =0 (ny—po) k=1, 2, ¢y =c(n,— ),

l:#i%&_ﬁ)J:;i%ﬂ_ﬁ)
A=A\ o A —A4\ e, 4]

by Ay b

4 2
and Jo(¢¥) is a zeroth-order Bessel function of the first kind.

A,

The arbitrary functions Ty(t) and Xp(t), k = 1, 2, are determined from the conditions
of continuity of the coefficient-functions ax(Z, Fo) on the characteristic curves

a1 (0, W) = a; (Fo),
j a3 ¢ 0)= a 2,
V&mm:@wm
a3 € 0) = a3 (2).
The average-mass temperature of the liquid in the pipe is determined from the equation

[6]

({ex, v. z, Fyw(X, v)aD
6(Z, Fo) = -2

{fwx, nap
D

The results of a calculation of the average-mass temperature @(Z, Fo) for different
values of the angle B are presented in Fig. 1.

In order to test the correctness of the solution of the problem (5)-(8) obtained, we
compared the results of the calculation of the average-mass temperature by Eq. (12) with B =
7/6 with the results of a solution of the analogous problem for an equilateral triangle [6]
(Table 1). The results of the comparison indicate the good agreement of the solution obtained
with a known solution for a particular case of the problem.
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NONSTEADY HEAT TRANSFER FROM A CYLINDER
WITH INJECTION

Yu. I. Babenko UDC 536.24,02:517.9

The problem of nonsteady heat transfer from a cylinder in the presence of radial
injection is analyzed. The heat flux at the surface of the cylinder is found from
the assigned variation in the surface temperature by the method of [1].

The nonsteady heat transfer from a cylinder to.an infinite external medium in the pres—
ence of radial injection is described by the problem

i_iﬁ_l_:?_e..i) T—0,
lign 0p? 0 dp
1<p<o, 0<T<<O00, 1)

Tlo=1 = T4(7); Tlp=w =0; Theo =0,
t=R¥fa, p=r/R; Pe=uRja.

The temperature gradient q, = (8T/3p)p=l at the surface of the cylinder is to be deter-
mined,

Despite the apparent simplicity of the problem, a solution by the operational method is
very laborious, since the Laplace transform of the solution has the form

g, = Pe/2- VD Kpes2 (V' p) Koep2 (V'P)

(K is the MacDonald function and p is the parameter of the Laplace transform), and the primi-~
tive function is expressed through a complicated integral of special functions, even for the
simplest case of Pe = 0 (see [2]).

Therefore, we carry out the solution following the method presented in [1], where a simi-
lar problem is analyzed for the equation

] & d
[Th_—“(p’ T)a—pz——ﬁ(p, T)Ep—+v(p, r)] T=0 (2)

(the difference is only in the notation).

The solution of the problem (1) is expressed in the form of a series with respect to the
derivative of the half-integral index of the assignedsurface temperature T;(1):

o l—n
—a@®= a,()D T T,(). )
n=0
Here the operator for the fractional derivative of order v is defined by the expression
T
DT ()= — .4 [ (1— 2T, (2) dz, v<1, (4)
ri—v) dr .
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